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• Very thankful for an opportunity to offer this at a meeting to remember 
Professor Mitra. 

• Professor Mitra was an inspirational figure for people of my generation

• His personal example as a physicist, his values in physics and in life were 
ideals 

• Two reminiscences

• I would like to share  recent preliminary work on a possibly paradigmatic limit 
describing  some generic aspects of the behaviour of electrons in metals. In 
this limit, electrons are mobile, but have infinitely strong local repulsion. To 
put it in perspective, we start with the opposite, familiar, ‘free’ electron limit 
for metals. 



• What is the ‘free' electron model of metals?

• Drude proposed in 1900 ( completely unreasonably) that
metals should be thought of as consisting of a free classical gas of electrons 
(three years after J J Thomson established  the electron as a
common ingredient of matter, in 1897) 

• Drude was able to successfully explain many  electrical and optical
properties of metals using this picture (and the kinetic theory of gases). 
e.g. Ohm’s law, with j = σ E and conductivity σ = (ne2𝜏/m)

Skin effect
Wiedemann Franz law ; (𝜅/σT) is a universal constant { quantum 
mechanically  (π2/3)(kB

2 /e2), but he got (3/2) )(kB
2 /e2) through a 

fortuitous   cancellation of two factors ~100, and through a factor of 
two mistake; nearly  the empirically observed value. } 



Some  major problems :
1. Not knowing which electrons are these (he assumed valence 

electrons(?); now we know that these are electrons in unfilled 
shells and are indeed valence electrons!….. )

 2. Assuming that the electrons form a classical gas ( they form a 
degenerate quantum gas of fermions.
 e.g. Cv  ⍺ kB (classical); Cv ⍺ kB (T/TF) quantum, and observed). 

  3. Pretending that they do not interact, and form an ideal gas 
      (they interact with the lattice ions and with each other).
     There are very sophisticated , adiabatically connected 
      very successful theories of interacting electrons  with 
     interaction effects describable by a few parameters ; Fermi liquid). 



•  These problems have been faced successfully.  
• Electrons in metal form an interacting Fermi liquid ( coherent  for T<<TF ~ 104K for most 

metals); well defined quasiparticles, well recognized collective effects, superconductive 
instability for effective attraction…… 

•  There is a large class of systems and phenomena in metals where the  interaction 
between electrons dominates. 

•  (repulsive)   potential energy of interaction>> the kinetic energy of motion 
        but the thing is a metal with mobile, kinetic electrons. 
        Electrons move,  while strongly avoiding each other. 
                    ‘Strongly correlated’ electron systems. 
 
• Is there an opposite paradigmatic limit  which is natural for such a situation,  one in which 

electrons are locally ‘un’free but globally free? 
 
• I will describe a tentative attempt to understand and describe this limit, in a simple lattice 

model for electrons ( work  done with SR Hassan (Institute of Mathematical Sciences, 
Chennai) and N S Vidhyadhiraja (JNCASR,  Jakkur, Bengaluru and published last year). 



Consider a  model for electrons at sites on a lattice:
 H   = 𝛴 { (εi  – μ)niσ + Uniσni-σ}  + 𝛴 tij  aiσ

+ ajσ

At site i, energy  of an electron is εi ; the chemical potential is μ 
(determines electron density or filling). 

If two electrons ( have to be of opposite spin because of Pauli exclusion 
principle) are on the same site, there is repulsion U.
(U is an oversimplified representation of the qualitative fact that the 
effective repulsion is short ranged because of screening). 

Electrons ‘hop’ from site i to   site j with amplitude tij . 
(Due to overlap of quantum wavefunctions; tight binding model)
 



• This is the very well known Hubbard model. Exactly soluble in d=1 and for all d if U=0. 
•  U =0; independent electrons ( tight binding version of free electron gas).
•  Nonzero U. Metal for all filling. But this cannot always be right.  For example, half filling and large U
                       Ground state is an insulator (Mott insulator)             
                    (Qualitatively different many body wave function). 
•  But what if filling is not half, and U is large. Has to be a metal. What kind of metal? 
•  Seems to be a  rather strange metal.  
   1. Has characteristic (coherent) Fermi liquid behaviour, but only at very low temperatures 
   
    2. Incoherent Fermi liquid over a very wide range of temperatures, manifested in
         
           lack of quasiparticle peak; broad single particle spectral density (not a delta function)
           linear in T resistivity  for clean metals
           ( properties most extensively studied in cuprates ; effective  large U Hubbard system [(U/t)>10] )

       We have explored, in a somewhat naieve way, the U=∞ limit. 
                                                      Is this a paradigmatic 
      ‘un’ free electron limit relevant to the large family of strange metals?  
        Can one start from here and do a (1/U) perturbation theory to access large but finite U ?.
     



•  Use the Hubbard X operator representation:
    Xi

ab = |ia><ib|.  The complete set of states at site i is  |i0>,|i↑>,Ii↓> for U=∞ 
        The Hamiltonian              H = Σi,σ  (-μ Xi σσ) + Σij,σ tij Xi 

σ0 Xj 
0σ 

(would have been exactly soluble if Xi 
σ0  were a canonical fermion creation operator a+

iσ ) 
 Assume tij  =  t  (real, positive) for i, j nearest neighbour.
                         =  0 otherwise ( hopping only to nearest neighbour)
( basically one number; namely electron density or filling , e.g. average number of electrons  
per site  ; all energy is in units of t). 
There is no small parameter.   
The model has been studied extensively in pioneering work by  B S Shastry for more than a 
decade since 2010, using the Schwinger source method. 
• B. S. Shastry, Extremely correlated quantum liquids, Phys. Rev.B 81, 045121 (2010)

• S. Shears, E. Perepelitsky, M. Arciniaga, and B. S. Shastry, Extremely correlated Fermi liquid 
theory for the u=∞, d =∞, Hubbard model to o(λ3 ), Phys. Rev. B 106, 035108(2022) ( a 
relatively recent paper).

•  We use an equation of motion method. Find the equation of motion of correlation 
functions (XX correlation functions) . Use the d=∞  approximation  to decouple them. 
Solve them self consistently. 



Electron moving  necessarily gives rise to 
      local bosonic fluctuations, namely local charge or 
      spin changes.
      The (diffusive) propagation of bosonic fluctuations 
     depends on electrons. Self consistency crucial.

-ImΣ(⍵) ~ ⍵2 for a coherent 
Fermi liquid . 
It is a coherent Fermi liquid 
at very low temperatures. 
(This can also be shown 
analytically, formally, from 
symmetry properties of the 
spectral f unction).



• Spectrum of local bosonic fluctuations 
• (both charge and spin, but finally 

number or charge)
• Diffusive; local quantum noise?



If we use one number to characterize the noise 
spectrum, it is  perhaps the mean Ω(T). We 
show this as a function of T. 
Quantum: Ω(T) >T.
This seems to have two subregimes
Coherent Quantum or 
Fermi Liquid(FL)
( We can show its existence from exact 
properties of spectral functions for low ω)
e.g. Im Σ(ω) ~ ω2

Incoherent Quantum  Regime (IQR)
Why is the FL-IQR crossover at such low T? 
Why is the IQR regime so large? (do not know)

There is  evidence for relatively  low  crossover 
T above which one can think of electrons as 
sitting on lattice sites, not hopping (classical 
regime) from data on thermopower of strongly 
correlated systems

Classical :  Ω(T) < T 



Crossover temperatures as a function 
of hole density per site δ



(Intrinsic) DC resistivity as a function 
of temperature  for different values of 
doping
1. T2 dependence at very low temperatures 
     (FL) 
2. Linear in T ; two slopes (ICR and Classical?)
Linear resistivity is a strong correlation feature.
Does it persist for large but finite U ?
(Need a perturbation theory in (t/U)< 0.1 for 
Cuprates. Working on this.
                     J ~ (t2/U).  T-J model with U=∞
               A new low energy scale J(Intrinsic)



We believe that we have unearthed two crucial features of  ECFL:
1. Strong, local, diffusive, self generated, bosonic fluctuations coupled to electrons 
2.  Large incoherent quantum regime
 
Nothing really new. Coupled electron boson models for strongly interacting systems 
have been around for long.  The difficulty has been in taking proper account of local 
constraints, since the same degrees of freedom are bosonic and fermionic!

 The theory is still too opaque and complicated. Need simpler, clearer versions. 
Nature of low FL-IQR scale not clear. Two slopes for linear resistivity(?)
Universal incoherent quantum electrical noise at each site. Planckian…. ?
In real systems, there is d-wave superconductivity, and they have unusual features . 
So, cannot and do not compare results of the U= ∞ theory with real systems yet. 
(Maybe with a theory upto O(1/U), one can confront experiments). 



• Starting to develop a (1/U) perturbation theory. (with Apoorv Srivastav, MSc student,  
presently JNCASR)

• There is a (1/U) expansion (Schrieffer-Wolff like; one develops an effective low energy 
theory by eliminating the high energy ( two particles at a site) states  (higher in energy by 
~U).  Such a theory has been around for long, in the form of the t-J model. ( e.g. AH 
Macdonald, SM Girvin, D.Yoshioka Phys.Rev.B37,9753(1988)).

 
** Find the effects of  the (1/U)  or J term in perturbation theory with the U=∞ Hamiltonian as 
Ho 

 ( One route: use the J term as an intersite pair  attraction term, do Hubbard Stratonovich 
transformation to describe the system in terms of coupled X and ѱ(pair) fields. For example, 
can have a microscopically determined G-L like Hamiltonian , functional of ψ for strong 
coupling on integrating out the effect of X fields and evaluating them in U=∞).
Describes intersite Cooper pairs, and with t’ term, strong coupling d wave superconductivity
(e.g. phenomenological  GL like theory of Banerjee, TVR, Dasgupta. (~2011) )

                                                       Thank you
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