Exclusive processes at B-factories in framework of Bethe-Salpeter equation

Shashank Bhatnagar

Chandigarh University

A.N.Mitra memorial meeting, April 14, 2025

Outline of Talk

- Introduction
- Bethe-Salpeter equation
- Charmonium Production processes:

(a)
$$e^{-} + e^{+} \rightarrow \gamma^{*} \rightarrow \gamma + H;$$

(b) $e^{-} + e^{+} \rightarrow \gamma^{*} + \gamma^{*} \rightarrow J/\psi + J/\psi;$
(c) $e^{-} + e^{+} \rightarrow \gamma^{*} + \gamma^{*} \rightarrow \eta_{c} + \eta_{c}$

Conclusion

Introduction: Exclusive processes at B-factories

> Exclusive processes refer to scattering events where all final-state particles are observed and identified:

```
• e^- + e^+ \rightarrow \gamma * \rightarrow \gamma + H \ (H = \chi_{cJ}; \eta_c);

• e^- + e^+ \rightarrow \gamma * \rightarrow J/\psi + J/\psi;

• e^- + e^+ \rightarrow \gamma * \rightarrow \eta_c + \eta_c;

• e^- + e^+ \rightarrow \gamma * \rightarrow J/\psi + \eta_c;
```

- one of the most intriguing subjects, and remains one of the most vibrant areas of research in quarkonium physics.
- Bridge between perturbative and non-perturbative QCD.
- Provide ideal testing ground for fundamental theories, and continue to refine our understanding of strong interactions.
- > Measurement of cross sections at 10.6 GeV:
- $e^-e^+ \to \gamma^* \to J/\Psi + \eta_c$ Belle: PRL89, 142001 (2002), PRD70, 071102 (2004)]
- $e^-e^+ \to \gamma^* \to J/\Psi + \chi_{cJ}$ at 10.6GeV, BABAR: [PRD72, 031101 (2005)]
- Led to rapid progress in theoretical description of charmonium

- Large discrepancy between leading order NRQCD prediction [Braaten and Lee, PRD67, 054007 (2003), PRD 72 (2005)] and Belle / BaBar data.
- Resolved only when radiative corrections + relativistic corrections taken simultaneously [Bodwin, Lee, Yu, PRD77 (2008)].
- >Additional processes:
- e- e+ $\rightarrow \gamma$ * $\rightarrow \gamma$ + X_{cJ} ; e- e+ $\rightarrow \gamma$ * $\rightarrow \gamma$ + η_c (at \sqrt{s} = 10.52, 10.58, 10.867GeV) [S. Jia et al., (Belle) PRD98, 092015 (2018)].
- e- e+ $\rightarrow \gamma^* \rightarrow \gamma X_{cJ}$ (at \sqrt{s} = 4- 4.6 GeV) [Ablikin et al.(BESIII), PRD104, 092001 (2021)].
- e-e+ $\rightarrow \gamma^* \gamma^* \rightarrow J/\psi + J/\psi$,: But absence of clear signal in Belle's measurement [K. Abe, et al., PRD 70, 071102(2004)].
- Theoretical Models: NRQCD, Light-cone expansion, Vector dominance model, Bethe-Salpeter equation.
- >NRQCD factorization:

$$\sigma(e^-e^+ \rightarrow H + X) = \sum_n C_n < O_n^H >$$

Motivation of Bethe-Salpeter equation:

- 1. Dynamical equation-based approach: Incorporates relativistic effects non-perturbatively even at lowest order in QCD.
- 2. Relativistic effects of quark spins (incorporated through BS wave functions) + covariant description of constituent quarks within hadron.
- 3. BSE framework applicable to processes across different energy scales.
 - > Processes studied at Leading order:
 - $e^- + e^+ \to \gamma^* \to \gamma + H \ (H = \chi_{co}(nP), \chi_{c1}(nP), \eta_c(nS))$
 - $e^- + e^+ \rightarrow \gamma^* + \gamma^* \rightarrow J/\psi + J/\psi$; $e^- + e^+ \rightarrow \gamma^* + \gamma^* \rightarrow \eta_c + \eta_c$;
 - >At large energy scale (\sqrt{s} = 10.6 GeV):
 - Lowest order QCD expansion in α_s is sufficient- the dominant contribution comes from lowest order diagrams in BSE.
 - Higher order α_s and α_{em} corrections expected to be negligible, and hence ignored.
 - \Rightarrow Lowest order QCD diagrams dominate at $\sqrt{s} \sim 10.6$ GeV

Bethe-Salpeter equation

$$=$$

$$\Psi(P,q) = S_F(p_1)i \int \frac{d^4q'}{(2\pi)^4} K(q,q') \Psi(P,q') S_F(p_2)$$

BSE Overview:

- Describes relativistic bound states in QFT
- Integral equation governing a two-body system with quarks.
- Reduction from 4D BSE → 3D form (under Covariant Instantaneous Ansatz)
- $K(q,q') = K(\hat{q},\hat{q}')$
- \triangleright Definitions: $q = (\hat{q}_{\mu}, M\sigma)$

$$\begin{split} \hat{q}_{\mu} = & q_{\mu} - \frac{q.P}{p^2} P_{\mu} \text{ ; } (\hat{q}.\text{P=o}) \\ \sigma P_{\mu} = & \frac{q.P}{p^2} P_{\mu} \quad \text{(Longitudinal to P),} \\ \text{4D volume element, } d^4q = d^3\hat{q}Md\sigma \end{split}$$

•
$$\hat{q}^2 = q^2 - \frac{(q.P)^2}{P^2} \ge 0$$
 (Lorentz-invariant)

- \triangleright Properties of \hat{q}^2 :
- 1. Lorentz-invariant variable ⇒ Enhances applicability of BSE under CIA across wide range of energy scales.
- 2. Ensures Lorentz-covariance of 3D forms of transition amplitudes + 3D Salpeter equations
- One-gluon-exchange like, vector-type kernel allows to relate scalar part of confinement potential with the scalar part of the gluon propagator in the infrared domain.
- > 3D Salpeter equations:

Strategy for mass spectral calculations:

1. Start with the full 4D BS wave function:

$$\Psi^P(P,q) = \{\phi_1(P,q) + P\!\!\!/ \phi_2(P,q) + Q\!\!\!/ \phi_3(P,q) + [P\!\!\!/, Q]\phi_4(P,q)\}\gamma_5$$
 CHL Smith, Ann. Phys. 53, 521 (1969); R.Alkofer, L.W. Smekel, Phys. Rep. 353, 281(2001).

Earlier works: Had developed a Power counting rule to distinguish the leading Dirac structures with the sub-leading structures:

[S.Bhatnagar, S-Y.Li, JPG32, 949 (2006); S.Bhatnagar, J. Mahecha, Y. Mangesha, PRD90,014034(2014)]

Under CIA:

$$\psi^{P}(\hat{q}) \approx \left[M\phi_{1}(\hat{q}) + P\phi_{2}(\hat{q}) + \phi_{3}(\hat{q}) + P\phi_{4}(\hat{q}) \right] \gamma_{5}$$

 $\Rightarrow \phi_1$, ϕ_2 (Leading amplitudes); ϕ_3 , ϕ_4 (Sub-leading amplitudes)

$$\psi^{+-}(\hat{q})=\psi^{-+}(\hat{q})=0$$
 - Equations of constraint- provide algebraic relationships (between ϕ_1 and ϕ_3); and (between ϕ_2 and ϕ_4)

$$(M-2\omega)\psi^{++}(\hat{q}) = -\Lambda_1^+(\hat{q})\Gamma(\hat{q})\Lambda_2^+(\hat{q}) \qquad \Rightarrow Coupled \ Salpeter \ equations$$
$$(M+2\omega)\psi^{--}(\hat{q}) = \Lambda_1^-(\hat{q})\Gamma(\hat{q})\Lambda_2^-(\hat{q}),$$

3D Salpeter equations found to decouple in heavy-quark limit, to give Mass spectrum dependent on N + analytic forms of radial wave functions:

H.Negash, S.Bhatnagar, IJMPE25,1650059 (2016).

E.Gebrehana, S.Bhatnagar, H.Negash, PRD100, 054034 (2019)

S.Bhatnagar, L. Alemu, PRD97, 034021 (2018)

Radial wave functions employed for calculation of leptonic decays, Radiative E1, M1 transitions etc.:

S.Bhatnagar, E.Gebrehana, PRDD102, 094024 (2020);

V.Guleria, E.Gebrehana, S.Bhatnagar, PRD 104, 094045(2021),

H.Negash, S.Bhatnagar, AHEP2017, 7306825 (2017),

Cross section for $e^- + e^+ \rightarrow \gamma * \rightarrow \gamma \; \mathrm{X}_{c0}$ Nucl. Phys. A1041, 122783 (2024)

$$> M_{fi} = ie_Q^2 [\overline{v_2} \gamma_\mu u_1]_S^1 \int \frac{d^4q}{(2\pi)^4} Tr[\overline{\Psi_S}(P,q) (\gamma. \epsilon') S_F(p_1') \gamma_\mu]$$

Amplitude M_{fi} expressed as: $M_{fi} = ie_Q^2 [\overline{v_2} \gamma_\mu u_1] M_\mu$;

 $M\mu = \langle \gamma, \chi_{c0} | J\mu | o \rangle$ - Transition matrix element of e.m. current for $\gamma^* \rightarrow \gamma \chi_{c0}$

$$\psi(P,q) = f_1(q,P) - i P f_2(q,P) - i q f_3(q,P)$$
 [C. H. L. Smith, Ann. Phys. 53, 521 (1969)] $- [P, q] f_4(q,P),$

$${\pmb M}_{fi}^1 = -iee_Q^2[\bar{v}^{(s2)}(\bar{p}_2)\gamma_\mu u^{(s1)}(\bar{p}_1)] \frac{-1}{s} \times$$

Pole positions of quark-propagators $S_F(p_1)$, $S_F(-p_2)$ and $S_F(p'_1)$ in complex σ -plane:

$$\sigma_1^{\pm} = -\frac{1}{2} \mp \frac{\omega}{M} \pm i\epsilon \qquad \sigma_2^{\pm} = \frac{1}{2} \mp \frac{\omega}{M} \pm i\epsilon \qquad \qquad \beta^{\pm} = (-\frac{1}{2} - \frac{2E^2}{M^2}) \mp \frac{1}{M} \sqrt{\omega^2 + \frac{4E^4}{M^2}} \pm i\epsilon$$

$$M_{fi}=i\left[\overline{v_2}\gamma_\mu u_1\right]M_\mu\;;\qquad M_\mu=\beta_1\epsilon_\mu'+\beta_2(I.\epsilon')P_\mu+\beta_3(I.\epsilon')k_\mu$$

e.m. gauge invariance demands: $k_{\mu}M_{\mu} = 0 \implies \beta_2 = 0$

$$M_{fi} = [\bar{v}^{s_2}(p_2)\gamma_{\mu}u^{s_1}(p_1)][\beta_1\epsilon'_{\mu} + \beta_3(I.\epsilon')k_{\mu}]$$

e.m. form factors:

$$\begin{split} \beta_1 &= \frac{8ee_Q^2 N_S}{M^4 s} \int \frac{d^3\hat{q}}{(2\pi)^3} \phi_S(\hat{q}) (\alpha_1 + \alpha_4 \hat{q}^2); \\ \beta_3 &= \frac{8ee_Q^2 N_S}{M^4 s} \int \frac{d^3\hat{q}}{(2\pi)^3} \phi_S(\hat{q}) |\hat{q}| \alpha_3 \end{split}$$

(effective coupling of bound states with γ^*)

$$\Psi_{S}(\hat{q}) = N_{S} \left[\frac{M^{2}}{m^{2}} + i \frac{\gamma \cdot \hat{q}}{m} + \cdots \right] \phi_{S}(\hat{q})$$

In meson rest frame:

$$\frac{\gamma.\hat{q}}{m} \approx (\gamma.v)$$
 in NRQCD

- \Rightarrow (γ, \hat{q}) /m reflects O(v) correction to M_{fi} (Consistent with NRQCD power counting!)
- \Rightarrow Covariant structure of BS wave function automatically generates expansion in powers of quark relative velocity, v in NRQCD Correction beyond LO contribution in NRQCD

(Lorentz-covariance of 3D amplitude under Covariant instantaneous ansatz)

$$\phi_S(1P,\hat{q}) = \sqrt{\frac{2}{3}} \frac{1}{\pi^{3/4}} \frac{1}{\beta_S^{5/2}} |\hat{q}| e^{-\frac{\hat{q}^2}{2\beta_S^2}},$$

$$\phi_S(2P, \hat{q}) = \sqrt{\frac{5}{3}} \frac{1}{\pi^{3/4}} \frac{1}{\beta_S^{5/2}} |\hat{q}| (1 - \frac{2\hat{q}^2}{5\beta_S^2}) e^{-\frac{\hat{q}^2}{2\beta_S^2}}$$

(3D Radial wave functions)

[PRD100, 054034 (2019); PRD97, 034021(2018)]

2D Plots of Integrands of transition form factor: β_1 , β_3 vs $|\hat{q}|$ and \sqrt{s}

Regions of discontinuities in hadron internal momentum, $|\hat{q}|$ (in GeV) in the integrands I_{β_1} , and I_{β_3} of form factors β_1 , and β_3 respectively, in Eq. (25) at different center of mass energies, \sqrt{s} (in GeV) in the range, 4.6 - 12 GeV for the process $e^-e^+ \rightarrow \gamma \chi_{c0}(1P)$.

\sqrt{s}	$ \hat{q} $ (for β_1)	$ \hat{q} $ (for β_3)
12	$2.79 < \hat{q} < 2.82$	$2.79 < \hat{q} < 2.82$
10.6	$2.73 < \hat{q} < 2.76$	$2.73 < \hat{q} < 2.76$
8	$2.54 < \hat{q} < 2.57$	$2.54 < \hat{q} < 2.57$
6	$2.28 < \hat{q} < 2.32$	$2.27 < \hat{q} < 2.33$
4.6	$2.01 < \hat{q} < 2.05$	$2.01 < \hat{q} < 2.05$

(Narrow discontinuous regions in both $|\hat{q}|$ and \sqrt{s} in integrands of β_1, β_3 -results of $Md\sigma$ integrations over the poles of quark propagators).

Discontinuities become narrower with increase in \sqrt{s}

- β_1 and β_3 encapsulate entire momentum dependence + play crucial role in maintaining gauge invariance of transition amplitude.
- Discontinuities presently ignored to ensure numerical stability

Cross section for $e^-e^+ \rightarrow \gamma^* \rightarrow \gamma + \chi_{c0}$.

$$|\bar{M}_{fi}|^2 = \left[2\beta_1^2(-s + 3m_e^2) - \frac{1}{2}\beta_3^2 s^2(1 - \cos^2\theta)\right]$$

$$\sigma = \frac{1}{32\pi^2 s^{3/2}} |\vec{P}'| \int d\Omega' |\bar{M}_{fi}|^2$$

Cross sections (in fb) at \sqrt{s} =10.6GeV- 4 GeV in BSE

Process	\sqrt{s}	BSE	Experiment
$e^{-}e^{+} \rightarrow \gamma \chi_{c0}(1P)$ $e^{-}e^{+} \rightarrow \gamma \chi_{c0}(1P)$ $e^{-}e^{+} \rightarrow \gamma \chi_{c0}(1P)$ $e^{-}e^{+} \rightarrow \gamma \chi_{c0}(2P)$ $e^{-}e^{+} \rightarrow \gamma \chi_{c0}(2P)$	10.6 4.6 4.0 10.6 4.6	3.810 46.617 13.785 3.570 64.073	<205.9 [16] <2.6×10 ³ [11] <4.5×10 ³ [11]

(σ within upper limits of Belle and BESIII)

[Nucl. Phys. A104, 122783 (2024)]

70

 $\sigma(s) \sim 1/s^2$ at high energies

Experiment:

[16] S. Jia et al., [Belle], PRD98 (2018)

[11] M. Ablikim, et al., [BESIII] PRD104, (2021)

Other models (at 10.6 GeV):

$$\sigma(e^-e^+ \to \gamma^* \to \gamma + \chi_{c0,}(1P)) = 3.11^{+1.05}_{-0.94}$$
 fb [Chung, JHEP 09, 195 (2021) $\sigma(e^-e^+ \to \gamma^* \to \gamma + \chi_{c0,}(1P)) = 1.885$ fb [Chen et al., PRD 88, 074021 (2013)

Process	\sqrt{s}	$\beta_1[GeV^{-1}]$	$\beta_3[GeV^{-2}]$
$e^-e^+ \rightarrow \gamma + \chi_{c0}$ (1P)	10.6	-4.869* 10 ⁻⁶	-2.93*10 ⁻⁶
$e^-e^+ \rightarrow \gamma + \chi_{c0}$ (1P)	4.6	-1.242*10 ⁻⁴	-7.517*10 ⁻⁵
$e^-e^+ \rightarrow \gamma + \chi_{c0}$ (2P)	10.6	$5.583*10^{-6}$	2.967*10 ⁻⁶
$e^-e^+ \rightarrow \gamma + \chi_{c0}$ (2P)	4.6	1.473*10 ⁻⁴	$6.345*10^{-5}$

(Form factors: β_1 , β_3)

$$|\bar{M}_{fi}|^2 = \left[2\beta_1^2(-s + 3m_e^2) - \frac{1}{2}\beta_3^2s^2(1 - \cos^2\theta)\right]$$

$$\sigma = \sigma_A + \sigma_{Bi}$$

4-5 GeV: β_1 drives growth of cross section with oscillations due to rapid change.

5-7 GeV:

"Interference" between σ_A and σ_B leading to sharp fluctuations.

7-20 GeV: β_3 dominates leading to smooth fall in cross section.

$$e^- + e^+ \rightarrow \gamma * \rightarrow \gamma + \chi_{c1}$$

Nucl. Phys. A1041, 122783 (2024)

 M_{fi} expressed as: M_{fi} = $ie_Q^2[\overline{v_2}\gamma_\mu u_1]M_\mu$;

$$M_{\mu}$$
= $\langle \gamma \chi_{c1} | J_{\mu} | o \rangle$

$$M_{fi} = [\bar{v}^{s_2}(p_2)\gamma_\mu u^{s_1}(p_1)][g_2\epsilon_{\mu\nu\alpha\beta}\epsilon_\nu^\lambda\epsilon_\alpha^{\lambda'}k_\beta + g_3(I.\epsilon)\epsilon_{\mu\nu\alpha\beta}P_\nu\epsilon_\alpha^{\lambda'}k_\beta]. \ \ (\text{Gauge-invariant form})$$

$$g_{2} = \frac{8ee_{Q}^{2}N_{A}}{M^{4}s} \int \frac{d^{3}\hat{q}}{(2\pi)^{3}} \phi_{A}(\hat{q})\Theta_{1}, \quad \text{(Form factors)}$$

$$g_{3} = \frac{8ee_{Q}^{2}N_{A}}{M^{4}s} \int \frac{d^{3}\hat{q}}{(2\pi)^{3}} \phi_{A}(\hat{q})|\hat{q}|\Theta_{6}, \quad (g_{2,3} \approx \frac{1}{s})$$

$$\Theta_1 = \theta_1(M-2\omega)I_1' + \rho_1(M+2\omega)I_1''$$

$$\Theta_6 = \theta_6 (M - 2\omega) I_1' + \rho_6 (M + 2\omega) I_1''$$

(I', I" are results of $Md\sigma$ integrations over poles of quark propagators)

$$\Psi_{A}(\hat{q}) = N_{A}\gamma_{5}\left[iM\not \epsilon + \not\epsilon\not p + 2i\frac{\not\epsilon\not p\hat{q}}{M}\right]\phi_{A}(\hat{q})$$

$$\phi_A(1P,\hat{q}) = \sqrt{\frac{2}{3}} \frac{1}{\pi^{3/4}} \frac{1}{\beta_A^{5/2}} |\hat{q}| e^{-\frac{\hat{q}^2}{2\beta_A^2}},$$

$$\phi_A(2P,\hat{q}) = \sqrt{\frac{5}{3}} \frac{1}{\pi^{3/4}} \frac{1}{\beta_A^{5/2}} |\hat{q}| (1 - \frac{2\hat{q}^2}{5\beta_A^2}) e^{-\frac{\hat{q}^2}{2\beta_A^2}}$$

(3D BS wave function under CIA)

(3D radial wave functions)

[PRD100, 054034 (2019); PRD97, 034021(2018); PRD102, 094024(2020)]

Cross section (in fb) for $e^-e^+ \rightarrow \gamma^* \rightarrow \gamma + \chi_{c1}$

Process	\sqrt{s}	BSE	Experiment [11,16]
$e^-e^+ \to \gamma \chi_{c1}(1P)$	10.6	12.071	$17.3^{+4.2}_{-3.9} \pm 1.7$
$e^-e^+ \rightarrow \gamma \chi_{c1}(1P)$	4.6	75.832	$(1.7^{+0.8}_{-0.6} \pm 0.2) \times 10^3$
$e^-e^+ \rightarrow \gamma \chi_{c1}(1P)$	4.0	50.055	$(4.5^{+1.5}_{-1.3} \pm 0.4) \times 10^3$
$e^-e^+ \rightarrow \gamma \chi_{c1}(2P)$	10.6	9.751	
$e^-e^+ \rightarrow \gamma \chi_{c1}(2P)$	4.6	43.518	

Experiment:

[11] M. Ablikim, et al.,(BESIII), PRD 104 (2021) 092001 [16] S. Jia, et al., (Belle) PRD98 (2018) 092015.

At 4.6GeV: σ =75.832fb (within 2 σ of BESIII measurement).

At 4GeV: σ =50.055fb (within 2.8 σ of BESIII measurement).

Minor fluctuations observed in plot of σ at BESIII energies, which are analyzed in terms of plots of form factors, g2 and g3

Other models (at 10.6 GeV):

 $\sigma = 9.7 \, fb$ [Li et al., JHEP 01 (2014) 022]

 $\sigma = 25.96 \ fb$ [Sang, et al., JHEP 10 (2020) 098]

$$e^-e^+ \rightarrow \gamma^* \rightarrow \gamma + \eta_c$$

[Nucl. Phys. A 1041 (2024) 122783]

$$M_{fi} = [\bar{v}^{s_2}(p_2)\gamma_{\mu}u^{s_1}(p_1)]\beta\epsilon_{\mu\nu\alpha\beta}P_{\nu}\epsilon_{\alpha}^{\lambda'}k_{\beta};$$
 (Gauge-invariant form)

$$\beta = \frac{8ee_Q^2 N_P}{M^4 s} \int \frac{d^3 \hat{q}}{(2\pi)^3} X_2' \phi_P(\hat{q});$$

$$X_2' = -b_1'(M - 2\omega)I_1' + b_2'(M + 2\omega)I_1''.$$

$$|\bar{M}_{fi}|^2 = \frac{1}{4}\beta^2 [16m_e^2 M^4 + 4m_e^2 s^2 + s^3 (1 + \cos^2 \theta) - M^2 (16m_e^2 s + s^2 (1 + 3\cos^2 \theta))]$$

$$\sigma = \frac{1}{32\pi^2 s^{3/2}} |\vec{P'}| \int d\Omega' |\vec{M}_{fi}|^2$$

Process	\sqrt{s}	BSE	Experiment [13,16]	[53]
$e^-e^+ \to \gamma \eta_c(1S)$	10.6	41.4575	< 21.1	70
$e^-e^+ \rightarrow \gamma \eta_c(1S)$	4.6	310.449	$(0.23 \pm 0.53 \pm 0.35) \times 10^3$	678
$e^-e^+ \rightarrow \gamma \eta_c(1S)$	4.0	178.271	$(0.44 \pm 1.02 \pm 0.32) \times 10^3$	540
$e^-e^+ \rightarrow \gamma \eta_c(2S)$	10.6	22.371		32
$e^-e^+ \to \gamma \eta_c(2S)$	4.6	19.702		33

Experiment:

[13] M. Ablikim, et al., PRD 96 (2017) 051101(R).

[16] S. Jia, et al., Belle Collaboration, PRD 98 (2018) 092015.

Other Models:

[53] Y. J. Li et al., JHEP 01,022 (2014)

 $\sigma = 41.6 \pm 14.1 \, fb$ (at 10.6 GeV) [Braguta, PRD 82, 074009 (2010)]

$$e^- + e^+ \rightarrow \gamma^* + \gamma^* \rightarrow J/\psi + J/\psi$$
[Nucl. Phys. A1053 (2025) 122969]

 $J/\psi + J/\psi$ cross section suppressed by α^2/α_s^2 compared to $J/\psi + \eta_c$.

Fragmentation diagrams enhanced by $\frac{s^2}{16M^4}$ compared to rearrangement diagrams $\rightarrow \sigma(J/\psi + J/\psi) > \sigma(J/\psi + \eta_c)$

Calculated cross section in BSE with diagrams $\approx 0(\alpha^4)$

At $\sqrt{s} = 10.6$ GeV, lowest order QCD calculation in α_s in BSE is found sufficient

• G. T. Bodwin, J. Lee, and E. Braaten, PRL 90. 162001(2003); PRD 67, 054023(2003).

- Let P, q, ϵ (P', q', ϵ ') external (internal) momenta, and polarization vectors of two out- going vector mesons.
- Quark momenta:

$$p_1 = \frac{1}{2}P + q$$
, $p_2 = \frac{1}{2}P - q$, $p_1' = \frac{1}{2}P' - q'$, $p_2' = \frac{1}{2}P' + q'$.

• Fragmentation: Internal momenta q and q' are independent:

$$k^2 k'^2 = M^2 M'^2$$

- Quark-rearrangement: q and q' are not independent
- => Photon propagators: $1/k^2$, $1/k'^2$;

$$[k = \frac{1}{2}(P+P')+q-q'; k = \frac{1}{2}(P+P')-q+q']$$

depend upon q and q'.

Heavy-quark approximation: $m_Q>> q \sim (\alpha_S m_Q)$, photon propagators are made independent of internal hadron momentum:

$$k^2k'^2 \approx \frac{s^2}{16}$$

Amplitudes:

$$\begin{split} M_{fi}^{frg.} = & \frac{e^2 e_Q^2}{M^2 M'^2} [\bar{v}_2 \gamma_\nu u_1] \frac{-i \gamma. Q + m_e}{Q^2 + m_e^2} \int \frac{d^4 q}{(2\pi)^4} \text{Tr}[\gamma_\mu \overline{\Psi}(P,q)] \int \frac{d^4 q'}{(2\pi)^4} \text{Tr}[\gamma_\mu \overline{\Psi}(P',q')] \\ + & \text{(Exchange)}; \end{split}$$

$$M_{fi}^{rearr.} = \frac{16e^{2}e_{Q}^{2}}{s^{2}} [\bar{v}_{2}\gamma_{\nu}u_{1}] \frac{-i\gamma.Q + m_{e}}{Q^{2} + m_{e}^{2}} \int \frac{d^{4}q}{(2\pi)^{4}} \int \frac{d^{4}q'}{(2\pi)^{4}} \text{Tr}[\gamma_{\mu}\overline{\Psi}(P',q')\gamma_{\nu}\overline{\Psi}(P,q)] + (\text{Exchange})$$

Reduction to 3D form:

$$d^4 q = d^3 \hat{q} \text{ M } d\sigma; \quad \overline{\Psi}(\hat{q}) = \int M d\sigma \ \overline{\Psi}(P,q);$$

$$\begin{split} \bar{\Psi}_{V}(\hat{q}) &= \left[iM \not\in + (\hat{q}.\epsilon) \frac{M}{m} + \not\!\!P \not\in + \frac{i}{2m} \hat{q} \not\in \not\!\!P + \frac{i}{2m} (\hat{q}.\epsilon) \not\!P \right] \phi_{V}(\hat{q}), \\ \bar{\Psi}_{V}(\hat{q}') &= \left[iM' \not\in + (\hat{q}'.\epsilon') \frac{M'}{m} + \not\!P' \not\in + \frac{i}{2m} \hat{q}' \not\in \not\!P' + \frac{i}{2m} (\hat{q}'.\epsilon') \not\!P' \right] \phi_{V}(\hat{q}'). \end{split} \tag{3D BS wave functions)$$

$$\phi_V(1S, \hat{q}) = e^{-\frac{\hat{q}^2}{2\beta^2}};$$

$$\phi_V(2S, \hat{q}) = (1 - \frac{2\hat{q}^2}{3\beta^2})e^{-\frac{\hat{q}^2}{2\beta^2}}.$$

(Unnormalized 3D Radial wave functions* of final vector mesons obtained as solutions of their mass spectral equations)

*[PRD100, 054034 (2019)]

M_{fi} expressible in terms of 3D integrals involving two final vector mesons:

$$G_1 = \int \frac{d^3\hat{q}}{(2\pi)^3} \phi_V(\hat{q})$$

$$G_1' = \int \frac{d^3\hat{q}}{(2\pi)^3} |\hat{q}| \phi_V(\hat{q})$$

$$G_2 = \int \frac{d^3\hat{q}'}{(2\pi)^3} \phi_V(\hat{q}')$$

$$G_2' = \int \frac{d^3 \hat{q}'}{(2\pi)^3} |\hat{q}'| \phi_V(\hat{q}')$$

Leptonic decay constants:

$$f_{V1} = 4\sqrt{3}N_{V1} \int \frac{d^3\hat{q}}{(2\pi)^3} \phi_{V1}(\hat{q}) = 4\sqrt{3}N_{V1}G_1;$$

$$f_{V2} = 4\sqrt{3}N_{V2} \int \frac{d^3\hat{q}'}{(2\pi)^3} \phi_{V2}(\hat{q}') = 4\sqrt{3}N_{V2}G_2$$

Form factors:

Meson	$N_V[GeV^{-2}]$	G [GeV ³]	G' [GeV ⁴]	$f_V[GeV]$
J/ψ	7.2958	0.00826	0.00668	0.4175 (Exp.=0.411)
$\psi(2S)$	5.9281	0.00882	0.00729	o.3622 (Exp.=o.279)

$$|\overline{M_{fi}}|^2 = \frac{1}{4} \sum_{S1,S2,\lambda,\lambda'} M_{fi}^{\dagger} M_{fi} = |\overline{M_{fi}}|^2_{Frag.} + |\overline{M_{fi}}|^2_{Rearr.} + |\overline{M_{fi}}|^2_{Interf.}$$

$$\sigma = \frac{1}{32\pi^2 s^{3/2}} |\vec{P'}| \int d\Omega' |\vec{M}_{ft}|^2 \qquad |\vec{P'}| = \sqrt{\frac{1}{s} [s - (M + M')^2] [s - (M - M')^2]}$$

Table 1 Cross sections (in fb) at leading order (LO) for process, $e^-e^+ \rightarrow J/\Psi J/\Psi$ calculated in present work at $\sqrt{s}=10.6 GeV$ along with experimental data, and results of other models.

Process	BSE-CIA	Expt. [2]	NRQCD [5]	[14]	[4]
$e^-e^+ \rightarrow J/\psi J/\psi$ $e^-e^+ \rightarrow J/\psi \psi (2S)$	2.4549 1.969	< 9.1 < 13.3	6.65±3.02 5.52±2.50	2.260 1.460	2.12±0.85 1.43±0.57
$e^-e^+ \rightarrow \psi(2S)\psi(2S)$	1.6281	< 5.2	1.15 ± 0.52	0.230	0.24 ± 0.10

$\sigma(e^-e^+ \rightarrow J/\psi \ J/\psi)$ *	$\sigma^{Frag.}$ (% of σ)	$\sigma^{Arrn.}$ (% of σ)	σ^{Int} (% of σ)
2.4549 fb	3.215 fb (131%)	0.3639 fb (14.823%)	-1.124 fb (-45.814%)

*Nucl. Phys. A1053, 122969 (2025).

[2] (Belle), PRD70, 071102 (2004).

[5] PRL 90, 162001 (2003).

[4] PRD 78, 054025 (2008).

[14] Phys. At. Nucl. 67, 1338 (2004).

$$e^-e^+ \rightarrow \gamma^* \gamma^* \rightarrow \eta_c + \eta_c$$

$$M_{fi}^{rearr.} = \frac{^{16e^2e_Q^2}}{s^2} [\bar{v}_2 \gamma_\nu u_1] \frac{^{-i\gamma.Q+m_e}}{Q^2+m_e^2} \int \frac{d^4q}{(2\pi)^4} \int \frac{d^4q'}{(2\pi)^4} \text{Tr}[\gamma_\mu \overline{\Psi}(P',q')\gamma_\nu \overline{\Psi}(P,q)] + (\text{Exchange})$$

Reduction to 3D form:

$$d^4$$
q = $d^3\hat{q}$ Md σ ; $\overline{\Psi}(\hat{q}) = \int Md\sigma \,\overline{\Psi}(P,q)$

Reduction to 3D form:
$$d^{4}q = d^{3}\hat{q} \operatorname{Md}\sigma; \quad \overline{\Psi}(\hat{q}) = \int Md\sigma \, \overline{\Psi}(P,q); \qquad \qquad \overline{\Psi}_{P}(\hat{q}) = N_{P}\gamma_{5}[M - i\rlap{/}{p} + \frac{2\rlap{/}{q}\rlap{/}{p}}{M}]\phi_{P}(\hat{q})$$

$$M_{ft} = \frac{16e^2e_Q^2}{s^2}N_PN_P'\left[2G_1G_2(-4MM'+4P.P')[\bar{v}^{(s2)}(\bar{p}_2)[\frac{i\not Q+4m_e}{Q^2+m_e^2}]u^{(s1)}(\bar{p}_1)] + \right]$$

$$4(-4G_{1}G_{2}-\frac{16I.I'}{MM'}G_{1}'G_{2}')[\bar{v}^{(s2)}(\bar{p_{2}})\not\!\!\!/\frac{-i\not\!\!\!/}{Q^{2}+m_{e}^{2}}\not\!\!\!/^{\prime}u^{(s1)}(\bar{p_{1}})]-\frac{16P.P'}{MM'}G_{1}'G_{2}'[\bar{v}^{(s2)}(\bar{p_{2}})\not\!\!\!/\frac{-i\not\!\!\!/}{Q^{2}+m_{e}^{2}}\not\!\!\!/^{\prime}u^{(s1)}(\bar{p_{1}})]$$

 M_{fi}^{rearr} again expressed in terms of 3D integrals, G, G', with G related to f_P

Cross sections (in fb) at leading order (LO) for process, $e^-e^+ \to \eta_c \eta_c$ calculated in present work at $\sqrt{s}=10.6 GeV$ along with results of other models.

Process	BSE-CIA	NRQCD [5]
$\begin{array}{l} e^-e^+ \to \eta_c(1S)\eta_c(1S) \\ e^-e^+ \to \eta_c(2S)\eta_c(1S) \\ e^-e^+ \to \eta_c(2S)\eta_c(2S) \end{array}$	2.087×10^{-3} 1.8087×10^{-3} 0.2369×10^{-3}	$(1.83 \pm 0.10) \times 10^{-3}$ $(1.52 \pm 0.08) \times 10^{-3}$ $(0.31 \pm 0.02) \times 10^{-3}$

Form factors:

Meson	G [GeV ³]	$G'[GeV^4]$	$f_P[GeV]$
η_c (1S)	0.00812	0.00652	0.3282
η_c (2S)	-0.00877	-0.01206	0.2363

Leptonic decay constants:

$$f_P = 4\sqrt{3}N_P \int \frac{d^3\hat{q}}{(2\pi)^3} \phi_P(\hat{q}) = 4\sqrt{3}N_P G$$

* Nucl. Phys. A1053, 122969 (2025).

[5] G.T. Bodwin, J. Lee, E. Braaten, PRL 90, 162001 (2003).

Conclusion

> Studied the production processes at B-factories at 10.6 GeV for:

(A)
$$e^- + e^+ \rightarrow \gamma^* \rightarrow \gamma + H$$
; (H= χ_{c0} , χ_{c1} , and η_c)
(B) $e^- + e^+ \rightarrow \gamma^* + \gamma^* \rightarrow J/\psi + J/\psi$; and $e^- e^+ \rightarrow \gamma^* \gamma^* \rightarrow \eta_c + \eta_c$

- in framework of BSE under Covariant Instantaneous Ansatz.
- \triangleright In (A), Form factors β_1 , β_3 etc. absorb the entire momentum dependence in the amplitudes and cross section.
- \triangleright In (B), M_{fi} expressed in terms of 3D integrals, G related to leptonic decay constant of the meson.
- Substantial contributions to cross sections from lowest order diagrams in BSE. Comparison made with data and other models.
- > Cross sections analysed in terms of form factors.
- > Percentage contribution from fragmentation and rearrangement diagrams, along with interference of these amplitudes calculated for (B).

Based on:

S.Bhatnagar, Talk at 21st Intl. conf. on Hadron Spectroscopy and Structure (Hadron 2025), Osaka University (March 27-31, 2025).

S.Bhatnagar, H.Negash, Nucl. Phys. A1041, 122783 (2025).

S.Bhatnagar, V.Guleria, Nucl. Phys. A1053, 122969 (2024).

Thank you

Cross section:

$$\sigma = \frac{1}{32\pi^2 s^{3/2}} |\vec{P}'| \int d\Omega' |\vec{M}_{fi}|^2, \qquad \sigma = \sigma_C + \sigma_D$$

$$\begin{split} |\bar{M}_{fi}|^2 &= \frac{1}{4} \left[\frac{1}{48M^2} g_2^2 [4(M^4 + s^2)(-6m_e^2 + s) + s^3(1 + \cos\theta)^2 + M^2(48m_e^2 s - 8s^2 - s^2(1 + \cos\theta)(-1 + 3\cos\theta))] - \frac{1}{96} \frac{g_3^2}{3} (M^2 - s) [64m_e^2 s + s^2(5 + 3\cos^2\theta) + M^2(-64m_e^2 + 6s(1 + \cos\theta))] \right]. \end{split}$$

(Form factor plots)

(Rapid fluctuations in σ_D in 4.0< \sqrt{s} < 6 GeV due to fluctuations in g_3).

But σ_D has negligible contribution (1.30 - 1.46%) to total σ in any energy interval, but introduces mild fluctuations at low energy.